A Shell Model for Free Vibration Analysis of Carbon Nanoscroll

نویسندگان

  • Amin Taraghi Osguei
  • Mohamad Taghi Ahmadian
  • Mohsen Asghari
  • Nicola Maria Pugno
چکیده

Carbon nanoscroll (CNS) is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Strain Gradient Theory for the Analysis of Free Linear Vibration of Nano Truncated Conical Shell

In this paper the nano conical shell model is developed based on modified strain gradient theory. The governing equations of the nano truncated conical shell are derived using the FSDT, and the size parameters through modified strain gradient theory have been taken into account. Hamilton’s principle is used to obtain the governing equations, and the shell’s equations of motion are derived with ...

متن کامل

Discrepancies Between Free Vibration of FML and Composite Cylindrical Shells Reinforced by CNTs

In this study, discrepancies between the free vibration of fiber-metal laminate (FML) and composite cylindrical shells reinforced by carbon nanotubes (CNTs) based on Love’s first approximation shell theory have been considered by beam modal function model. The representative volume elements consist of three and four phases for composite and FML structures, respectively, which include fiber, CNT...

متن کامل

Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory

Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...

متن کامل

Free Vibration of Lattice Cylindrical Composite Shell Reinforced with Carbon Nano-tubes

The free vibration of the lattice cylindrical composite shell reinforced with Carbon Nano-tubes (CNTs) was studied in this study. The theoretical formulations are based on the First-order Shear Deformation Theory (FSDT) and then by enforcing the Galerkin method, natural frequencies are obtained. In order to estimate the material properties of the reinforced polymer with nano-tubes, the modified...

متن کامل

Experimental and Numerical Free Vibration Analysis of Hybrid Stiffened Fiber Metal Laminated Circular Cylindrical Shell

The modal testing has proven to be an effective and non-destructive test method for estimation of the dynamic stiffness and damping constant. The aim of the present paper is to investigate the modal response of stiffened Fiber Metal Laminated (FML) circular cylindrical shells using experimental and numerical techniques. For this purpose, three types of FML-stiffened shells are fabricated by a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017